Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 12(1): 1299, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1908217

ABSTRACT

Recently, an international randomized controlled clinical trial showed that patients with SARS-CoV-2 infection treated orally with the 3-chymotrypsin-like protease (3CLpro) inhibitor PF-07321332 within three days of symptom onset showed an 89% lower risk of COVID-19-related hospital admission/ death from any cause as compared with the patients who received placebo. Lending support to this critically important result of the aforementioned trial, we demonstrated in our study that patients infected with a SARS-Cov-2 sub-lineage (B.1.1.284) carrying the Pro108Ser mutation in 3CLpro tended to have a comparatively milder clinical course (i.e., a smaller proportion of patients required oxygen supplementation during the clinical course) than patients infected with the same sub-lineage of virus not carrying the mutation. Characterization of the mutant 3CLpro revealed that the Kcat/Km of the 3CLpro enzyme containing Ser108 was 58% lower than that of Pro108 3CLpro. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) revealed that the reduced activity was associated with structural perturbation surrounding the substrate-binding region of the enzyme, which is positioned behind and distant from the 108th amino acid residue. Our findings of the attenuated clinical course of COVID-19 in patients infected with SARS-CoV-2 strains with reduced 3CLpro enzymatic activity greatly endorses the promising result of the aforementioned clinical trial of the 3CLpro inhibitor.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Mutation, Missense , Patient Acuity , Adult , Aged , Amino Acid Substitution , COVID-19/enzymology , COVID-19/genetics , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Female , Humans , Male , Middle Aged
2.
Intern Med ; 60(16): 2569-2575, 2021 Aug 15.
Article in English | MEDLINE | ID: covidwho-1357466

ABSTRACT

Objective To consider effective measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in medical institutions, this study estimated the SARS-CoV-2 infection rate among healthcare workers (HCWs) in Tokyo, Japan, and determined the specific findings for mild coronavirus disease 2019 (COVID-19) cases. Methods This study analyzed the results of serologic tests to detect immunoglobulin G antibodies against SARS-CoV-2 and evaluated the demographic and clinical characteristics of the faculty and HCWs at a Tokyo medical institution in August 2020. The demographic and clinical characteristics of participants with antibody-positive results were compared to those of participants with antibody-negative results. Materials This study recruited 2,341 faculty and HCWs at a Tokyo medical institution, 21 of whom had a COVID-19 history. Results Of the 2,320 participants without a COVID-19 history, 20 (0.862%) had positive serologic test results. A fever and dysgeusia or dysosmia occurred with greater frequency among the participants with positive test results than in those with negative results [odds ratio (OR), 5.475; 95% confidence interval (CI), 1.960-15.293 and OR, 24.158; 95% CI, 2.693-216.720, respectively]. No significant difference was observed in the positivity rate between HCWs providing medical care for COVID-19 patients using adequate protection and other HCWs (OR, 2.514; 95% CI, 0.959-6.588). Conclusion To reduce the risk of COVID-19 spread in medical institutions, faculty and HCWs should follow standard and necessary transmission-based precautions, and those with a fever and dysgeusia or dysosmia should excuse themselves from work as soon as possible.


Subject(s)
COVID-19 , SARS-CoV-2 , Faculty , Health Personnel , Humans , Japan/epidemiology , Tokyo/epidemiology
3.
Keio J Med ; 70(2): 44-50, 2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1183786

ABSTRACT

SARS-CoV-2 whole-genome sequencing of samples from COVID-19 patients is useful for informing infection control. Datasets of these genomes assembled from multiple hospitals can give critical clues to regional or national trends in infection. Herein, we report a lineage summary based on data collected from hospitals located in the Tokyo metropolitan area. We performed SARS-CoV-2 whole-genome sequencing of specimens from 198 patients with COVID-19 at 13 collaborating hospitals located in the Kanto region. Phylogenetic analysis and fingerprinting of the nucleotide substitutions were performed to differentiate and classify the viral lineages. More than 90% of the identified strains belonged to Clade 20B, which has been prevalent in European countries since March 2020. Only two lineages (B.1.1.284 and B.1.1.214) were found to be predominant in Japan. However, one sample from a COVID-19 patient admitted to a hospital in the Kanto region in November 2020 belonged to the B.1.346 lineage of Clade 20C, which has been prevalent in the western United States since November 2020. The patient had no history of overseas travel or any known contact with anyone who had travelled abroad. Consequently, the Clade 20C strain belonging to the B.1.346 lineage appeared likely to have been imported from the western United States to Japan across the strict quarantine barrier. B.1.1.284 and B.1.1.214 lineages were found to be predominant in the Kanto region, but a single case of the B.1.346 lineage of clade 20C, probably imported from the western United States, was also identified. These results illustrate that a decentralized network of hospitals offers significant advantages as a highly responsive system for monitoring regional molecular epidemiologic trends.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , Humans , Phylogeny
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.29.21250798

ABSTRACT

ObjectivesWhole SARS-CoV-2 genome sequencing from COVID-19 patients is useful for infection control and regional trends evaluation. We report a lineage data collected from hospitals in the Kanto region of Japan. MethodsWe performed whole genome sequencing in specimens of 198 COVID-19 patients at 13 collaborating hospitals in the Kanto region. Phylogenetic analysis and fingerprinting of the nucleotide substitutions underwent to differentiate and classify the viral lineages. ResultsMore than 90% of the strains belonged to Clade 20B and two lineages (B.1.1.284 and B.1.1.214) have been detected predominantly in the Kanto region. However, one sample from a COVID-19 patient in November 2020, belonged to the B.1.346 lineage of Clade 20C, which has been prevalent in western United States. The patient had no history of overseas travel and no contact with anyone who had travelled abroad, suggesting that this strain appeared likely to have been imported from western United States, across the strict quarantine barrier. ConclusionB.1.1.284 and B.1.1.214 have been identified predominantly in the Kanto region and B.1.346 of clade 20C in one patient was probably imported from western United States. These results illustrate that a decentralized network of hospitals can be significantly advantageous for monitoring regional molecular epidemiologic trends. Highlights{middle dot} Whole SARS-CoV-2 genome sequencing is useful for infection control {middle dot} B.1.1.284 and B.1.1.214 have been identified predominantly in the Kanto region {middle dot} B.1.346 of Clade 20C was detected in one COVID-19 patient in November {middle dot} Molecular genomic data sharing provides benefits to public health against COVID-19


Subject(s)
COVID-19
5.
Open Forum Infect Dis ; 7(12): ofaa512, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-983770

ABSTRACT

BACKGROUND: Nosocomial spread of coronavirus disease 2019 (COVID-19) causes clusters of infection among high-risk individuals. Controlling this spread is critical to reducing COVID-19 morbidity and mortality. We describe an outbreak of COVID-19 in Keio University Hospital, Japan, and its control and propose effective control measures. METHODS: When an outbreak was suspected, immediate isolation and thorough polymerase chain reaction (PCR) testing of patients and health care workers (HCWs) using an in-house system, together with extensive contact tracing and social distancing measures, were conducted. Nosocomial infections (NIs) were defined as having an onset or positive test after the fifth day of admission for patients and having high-risk contacts in our hospital for HCWs. We performed descriptive analyses for this outbreak. RESULTS: Between March 24 and April 24, 2020, 27 of 562 tested patients were confirmed positive, of whom 5 (18.5%) were suspected as NIs. For HCWs, 52 of 697 tested positive, and 40 (76.9%) were considered NIs. Among transmissions, 95.5% were suspected of having occurred during the asymptomatic period. Large-scale isolation and testing at the first sign of outbreak terminated NIs. The number of secondary cases directly generated by a single primary case found before March 31 was 1.74, compared with 0 after April 1. Only 4 of 28 primary cases generated definite secondary infection; these were all asymptomatic. CONCLUSIONS: Viral shedding from asymptomatic cases played a major role in NIs. PCR screening of asymptomatic individuals helped clarify the pattern of spread. Immediate large-scale isolation, contact tracing, and social distancing measures were essential to containing outbreaks.

6.
J Hosp Infect ; 2020 Oct 24.
Article in English | MEDLINE | ID: covidwho-929195

ABSTRACT

COVID-19 caused by SARS-CoV-2 is a worldwide problem. From the standpoint of hospital infection control, determining the source of infection is critical. We conducted the present study to evaluate the efficacy of using whole genome sequencing to determine the source of infection in hospitalized patients who do not have a clear infectious contact history. Recently, we encountered two seemingly separate COVID-19 clusters in a tertiary hospital. Whole viral genome sequencing distinguished the two clusters according to the viral haplotype. However, the source of infection was unclear in 14 patients with COVID-19 who were clinically unlinked to clusters #1 or #2. These patients, who had no clear history of infectious contact within the hospital ("undetermined source of infection"), had haplotypes similar to those in cluster #2 but did not have two of the mutations used to characterize cluster #2, suggesting that these 14 cases of "undetermined source of infection" were not derived from cluster #2. Whole viral genome sequencing can be useful for confirming that sporadic COVID-19 cases with an undetermined source of infection are indeed not part of clusters at the institutional level.

SELECTION OF CITATIONS
SEARCH DETAIL